1. (a)

(b)
(¢)

Final Examination, 12 Dec 2002 (Solutions)
SM3110 (Fall 2002)

Let v = (2%2,sin(ay), z/Z) where a is a constant. Determine a so that the divergence of v
vanishes at the point P = (4,0, 1).

Solution: div v = 2zz + acos(ay) + v/z. At P the divergence has the value 10 + a, which
vanishes when a = —10.

Let v = (y? — 2,y — 22,0). Find the curl of v. Is this flow irrotational anywhere?

Prove the identity V X V¢ = 0 if ¢ is an arbitrary function of z, y, and z.

Solution: VX V¢ =V X (¢z, dy, 0z) = (D2y — yzs P2z — Prar Pyz — day) = (0,0, 0) because the order
of differentiation does not matter for smooth (at least twice differentiable) functions.

2. Verify by direct differentiation if

(a)

(b)

u(z) = €% cos 2z is a solution of u” + au' + bu = 0 for any pair (a,b).
Solutions: With u = e?? cos 2z the differential operator u” + au’ 4 bu takes the form

e** ((2a+b) cos(2z) — 2 (4 + a) sin(22)).

. This expression vanishes for ALL z if2a+b=0anda+4=0,0rifa=—4 and b= 8.

u(z,y) = sin3z cos4y is an eigenfunction of the Laplace operator —3‘9—; — 3‘9—3122. What is the

eigenvalue?

Solution: A function w is an eigenfunction of —(%zg — (,;9; with eigenvalue A if —%% — %’é = Au.
. 2 2 . . . . .

Let u = sin 3z cos 4y. Then —g—x% — g—y’é = 25sin 3z cos 4y = 25u. So w is an eigenfunction with

eigenvalue 25.

Give a parametrization for the plane that passes through the points (1,1,0), (0,2,2), and
(3,0,3).

Solution: First we use the three points on the plane and find two vectors that are parallel with
the plane: (1,1,0) and (0,2,2) give r; = (—1,1,2); (0,2,2) and (3,0,3) give ry = (3,—2,1).
Next we form the cross product of r; and rs to get n a normal vector to the plane:

n=r; xry=(57,—1).
Let (z,y, z) be any point on the plane. Considering that (1,1,0) is also on the plane, the vector
r3 = (x — 1,y — 1, 2) is parallel with the plane. Then n-r3 =0 i.e. bz + 7y — z = 12.

Find a unit normal vector to the surface of the upper hemisphere of the Earth at the point
whose longitude and latitude are 45 and 60 degrees, respectively.

Solution: The upper hemisphere is parametrized as
r(u,v) = R(cosu cos v, sinu cos v, sinv)

where R is the Earth’s radius and v and v are longitude and latitude. Then n = r, Xry, is normal
to the hemisphere. Now ry X 1y = (R? cos(u) cos(v)?, R2 cos(v)? sin(u), R? cos(v) sin(v)). The
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magnitude of this vector is R? cosv. Dividing n by its magnitude yields the desired unit vector

N = (cos(u) cos(v),cos(v) sin(u),sin(v)). Finally evaluating at u = 7 and v = § gives N =
1 13

Gvarave 2 )

4. (a) The function ¢(z,y) = ax?y? — by? + azx — by is the potential for a velocity vector field v.
Determine all values of a and b so that the velocity of the particle located at (2,—1) is (1,2).
Solution: v = V¢ = (2azy® + a,2ax?y — 2by — b). Evaluating v at (2, —1) yields (5a, —8a + b)
which equals (1,2) if a = £ and b= 2.

(b) The function ¥(z,y) = az? + zy + by? is the stream function of a velocity field v. Find all a
and b so that the velocity of the particle located at (1,—2) has magnitude 3.
Solution: v = (‘3—15, —g—i’) = (z + 2by, —2ax — y). Evaluating this vector at (1,—2) and setting
its magnitude equal to 3 yields the equation (2 —2 a)? + (1 —4 b)? = 7 for the set of all (a, b)s.

5. (a) Consider the velocity field v = (2?2 —z)k. Determine the flux of this fluid through the following
two surfaces:

i. a disk of radius 1 in the zy-plane and centered at the origin.
Solution: First parametrize the disk: r(u,v) = (ucosv,usinv,0). Next compute ry X r, =
(0,0,u). Then [ [gv-dr = [Z™ [Lr|s-1y X1, dudv = [I7 [1(0,0,—ucosv)-(0,0,u) dudv = 0
so as much fluid is passing through S from below to above it as in the opposite direction.

ii. a disk of radius 1 in the plane z = 3 and centered at the origin.
Solution: First parametrize the disk: r(u,v) = (ucosv,usinv, 3). Next compute r,, X r, =
(0,0,u). Then [ [gv -dr = [J™ fir|s ry X rydudv = [I7 [5(0,0, —ucosv + 3u? cos®v) -
(0,0, u) dudv = 3.

(b) Use the Stokes Theorem or compute the appropriate surface integral to determine the flux of
vorticity of v = x?k through the surface of the upper hemisphere of a sphere of radius 2 centered
at the origin.

Solution 1) Direct computation: w = Vxv = (0, —2z,0). r(u,v) = (2 cos u cos v, 2 sin u cos v, 2 sin v).
ry X Ty, = (4 cosucos?v,4 cos?vsinu,2 sin2v). Then [ [yw-dA = foz’r fO% (0, —4 cos ucos v, 0) -

(4 cosu cos?v,4 cos? v sinu, 2 sin2v) dvdu = 0.

2) Using the Stokes Theorem: We need to compute the line integral [ v-dr. r = (2cost,2sint,0).

But v|c = (0,0,4cos?t) is orthogonal to r'(t) = (—2sint,2cost,0). So the line integral will
vanish.

6. Consider the following wave equation initial-boundary value problem:
Uty = gy, u(0,t) = u(3,t) =0, w(z,0) =z(3—x), uz,0)=0.

(a) Use separation of variables and find the solution to this problem. Clearly indicate the process
of separation of variables and the Fourier Series method used in obtaining this solution.
Solution: From separation of variables we get that

o0

u(z,t) = Z (an cos

n=1

2nmt . 2nmt, . nmzx
+ bn Sin T) Sin T.
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(b)

(c)

But u¢(z,0) = 0 which implies b, = 0 for all n. u(z,0) = z(3 — z) so

(x(3 —z),sin "Z¥) 2 ( 54 54 cos(nw)) .

fn = (sin 2%, sin "2E) 3 \nfm T 3l
So -,
2 54 54 cos(n ) 2nwt . nwx
u(z,t) = - - cos sin
(%) 3Z(n37r3 nd 73 ) 3 3

n=1
Use the first nonzero term of the above solution and estimate u(3/2,3/4).
Solution: With n = 1 the solution takes the form

(2,1) 72 cos 27t i T

u(z,t) = — cos — sin —.

’ w2 3 3

So u(3/2,3/4) = 0.

Use the first nonzero term of the above solution and estimate how long it takes for the wave to
go though one complete vibration.

Solution: The period of cos 23t is 2r/(27/3) = 3.

7. Let v = (22 + 32, 2zy) be the velocity field of a fluid. Compute the acceleration a of this flow. Does
a have a potential p? If yes, find it.

Solution: a = v- Vv = (2(2?® + 3zy?), 2(3z%y + y3)). This vector has zero curl so there is a function
p such that Vp = (2(23 + 3zy?),2(32%y + ¢*)). From

15/ 3 9 Op 9 3

we get that p = “”2—4 + 322y% + %.

8. Let  stand for the angular velocity of our planet.

(a)

(b)

Noting that our planet rotates once every 24 hours, compute Q where 2 = (0,0,Q). What are
the units of Q7

0 — 2r radians _
Solution: { = (24 hours)(60 minutes/hour)(60 seconds/minute) 0.00007 rad/s.

Use this value of €2 and estimate the values in the centripetal acceleration € x (€ x r) where r
is the position vector to a typical point on the surface of the Earth. Assume that the radius of
the Earth is 6000 kilometers.

Solution: Let P = (z,y, z) be a point on the planet. Note that @ = (0,0,9Q). Thenr = (z,y, 2)
and 2 x (2 xr) = —Q2(z,y,0). = or y take their largest values at the equator which could be as
large as 6000 kilometers. So the nonzero components of the centripetal acceleration could be as
large as 0.000072 (rad/s)? x 6000000 meters = 0.0294m/s?, considerably smaller than 9.8 m/s?
from the acceleartion of gravity.
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9.

10.

Consider an incompressible fluid occupying the basin
D = {(z,y,2)|0 <z < H}.

Let v = (v1, v, v3) be the velocity field of a motion generated in D. Suppose that we have been able
to determine that

Ul(xvyaz) = 3.’L‘2y2 -, U2($,y,Z) =Yz,

but have only succeeded in measuring v3 at the bottom of the basin and that this value is
’U3(.’L‘,y,0) =z+ Y.

Determine v everywhere in D. (Hint: What does incompressibility mean mathematically?)
Solution: From the equation of incompressibility we have

dvy Ovy Ov
e oy T 5, =0
o Jus ovy  Ovg
9z oz Oy
Substituting the values of v; and v2 in the above relation yields
dvs
0z

Integrating this result with respect to z from 0 to z and using the value of v3 at z = 0 yields

= —2zy>.

v3 = —2zy’z + ¢ +y.
Solution: Since the flow is incompressible,

A flow is called geostrophic if the velocity v = (u(z,y),v(z,y)) and the pressure gradient Vp are

related by

10p
0 —fv= fu=—=22,
(%) >0y

where p, a constant, is the density of the fluid, and f is the coriolis parameter.

_1op
p oz’

(a) Assuming that f is constant, prove that the divergence of v must vanish.
Solution: From the equations of motion we have

__top 10
pf 9y’ pf Oz

Now div v = 3% + %Ly? which is equal to

1% 1 ¥
pf 0zdy  pf dydz
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(b)

Prove that the particle paths of a geostrophic flow and its isobars coincide.
Solution: Note that v-Vp = —=23"2" + %%g—z = 0. So v and Vp are orthogonal. Since Vp
is orthogonal to isobars, and since v is tangential to particle paths, particle paths and isobars

coincide.

Consider a high pressure field in a geostrophic flow in the northern hemisphere (where f > 0).
By appealing to the equations in (*) explain whether this high pressure field results in a clockwise
or a counterclockwise motion.

Solution: Without loss of generality, assume that the high pressure occurs at the origin of the
coordinate system. Let P be a point in the first quadrant. Then Vp at P points toward the
origin because 0 is a maximum of p. Then g—g <0and g—g < 0 at P (draw a picture to convince
yourself of this). Going back to the geostrophic equations, u > 0 and v < 0 at P which indicates
that the motion is clockwise.



